
BIOCHEMISTRY SUMMARY BOOK

Comprehensive Study Guide
Molecules • Pathways • Mechanisms

Made by mResource Prepared by Halla Mohamed

Academic Edition 2025

Comprehensive Review & Study Material

Contents

1. Carbohydrates	. 1
Cell Biology 1.SCIENTISTS	2 2 2
.Cell - Building Block of Organism 1.Cell Membrane	. 4
1. Passive Transport	. 6
Active Transport and Bulk 1.Active Transport 2.Bulk	
Proteins 1.Protein Importance 2.Nutritional Classification 3.Classifiaction By Side Chain	. 11
2. The Four Levels Of Protein Structure	. 14
.Enzymes (Part1) 1.Enzyme properties	. 17
.Enzymes (Part2)	19
0.Enzymes(part3) 1.Enzyme Inhibition	
1. DNA,RNA Structures 1. DNA 2. RNA 3. Nitrogenous Base Categories	. 23

1. Biomolecules

LECTURE 1: CARBOHYDRATES

KEY CONCEPT - Sources of Carbohydrates

Milk is the ONLY source of carbohydrates NOT derived from plants

Plant Storage:

- Starch primary storage form
- Found in seeds, tubers, roots
- Energy reserve for plants

Animal Storage:

- Glycogen animal starch
- Stored in muscles and liver
- Quick energy release

MONOSACCHARIDES - Simple Sugars

The building blocks of all carbohydrates

- Glucose
 - Most important monosaccharide
 - Present in ALL disaccharides.
 - Blood sugar
- Galactose
 - Component of lactose
 - Found in milk products

- Fructose
 - Sweetest natural sugar
 - Found in fruits and honey
 - Component of sucrose
- Ribose
 - Nucleic acid sugar
 - Component of RNA
 - 5-carbon sugar (pentose)

DISACCHARIDES - Double Sugars

Two monosaccharides connected by glycosidic linkage

Glycosidic Linkage

Covalent bond between two monosaccharide units

Forms through dehydration synthesis (removal of water)

Sucrose

Glucose + Fructose

Sugar beets, Sugar cane Table sugar

Lactose

Glucose + Galactose

Found in milk Dairy products

Maltose

Glucose + Glucose

Germinating seeds Malt sugar

POLYSACCHARIDES - Complex Carbohydrates

ALL polysaccharides are INSOLUBLE in water

Glycogen

Animal Storage

Starch

Cellulose

Plant Storage

Structural Support

Stored in muscles and liver

Potatoes, rice, Branched structure

Plant cell walls, Linear structure

2. CELL BIOLOGY

LECTURE 2: CELL BIOLOGY

BIOLOGICAL ORGANIZATION HIERARCHY

 $igcolumn{ Cells } \longrightarrow igcolumn{ Tissues } \longrightarrow igcolumn{ Organs } \longrightarrow igcolumn{ Organism} \longrightarrow igcolumn{ Organism} \cap$

Each level is more complex than the previous, with emergent properties

HISTORICAL TIMELINE - Discovery of Cells

Key scientists and their contributions to cell biology

Early Microscopy:

- Hans Janssen (1590s)
 - Invented compound microscope
 - Combined multiple lenses
- Robert Hooke (1665)
 - First used term "cell"
 - Observed cork plant tissue
- Antonie van Leeuwenhoek (1670s)
 - $-200 \times$ magnification achieved
 - First to see living cells
 - Observed bacteria, sperm cells

Cell Theory Development:

- Robert Brown (1831)
 - Studied orchid plants
 - Discovered cell nucleus
 - Named the "nucleus"
- Matthias Schleiden (1838)
 - Plant tissues made of cells
 - All plants are cellular
- Theodor Schwann (1839)
 - Animal tissues are cellular
 - Started cell theory
- Rudolf Virchow (1855)
 - Cells come from existing cells
 - Completed cell theory

PROKARYOTES vs EUKARYOTES - Fundamental Cell Types

PROKARYOTES

Nuclear Organization:

No true nucleus

DNA freely floating

Circular DNA

Cell Types:

Bacteria

Blue-green algae (cyanobacteria)

Always unicellular

Cell Structure:

Smaller cells

Cell wall present

No membrane-bound organelles

Simple internal structure

EUKARYOTES

Nuclear Organization:

True membrane-bound nucleus

DNA enclosed in nucleus

Linear DNA

Cell Types:

Humans

Fungi

Animals

Cell Structure:

Larger, more complex

No cell wall (animals)

Membrane-bound organelles

Complex internal organization

STUDY SUMMARY & KEY POINTS

Carbohydrates Essentials:

- Milk = only non-plant carb source
- Glucose in all disaccharides
- Three main disaccharides & composition
- Polysaccharides = water insoluble
- Glycogen (animals) vs Starch (plants)
- Cellulose = structural, indigestible

Cell Biology Essentials:

- Organization: Cells \rightarrow Tissues \rightarrow Organs
- Historical timeline of discoveries
- Cell theory: All life is cellular
- Prokaryotes vs Eukaryotes differences
- Nuclear organization differences
- Size and complexity differences

Must Remember Examples:

- Sucrose = Glucose + Fructose
- Lactose = Glucose + Galactose
- Maltose = Glucose + Glucose
- Glycogen in muscles/liver
- Starch in plants (branched)
- Cellulose (linear, structural)

Key Scientists to Remember:

- Hooke \rightarrow "cell" term
- Leeuwenhoek \rightarrow living cells
- Brown \rightarrow nucleus discovery
- Schleiden \rightarrow plant cells
- Schwann \rightarrow animal cells, cell theory
- Virchow \rightarrow completed cell theory

Lecture 3: Cell - Building Block of Organism:

- Unicellular organisms are independent
- Each cell can carry out all life processes

Cell Membrane:

- Composition:
 - Phospholipids (2 layers bilayer)
 - * Glycoproteins = Carbohydrate + Protein clusters

Phospholipid Structure:

- Polar head (hydrophilic) loves water
- Non-polar tails (hydrophobic) repels water
- Forms selective permeability with integral proteins

Functions of Cell Membrane:

- Key Functions:
 - Protection of cell contents
 - Transport of materials in and out
 - Cell-to-cell communication
 - Maintains cell shape and structure

Mitochondria:

- Oval-shaped organelles with double membrane
 - Inner membrane is highly folded (cristae)
 - Called "Powerhouse of the cell" (energy production)
 - Site of cellular respiration and ATP synthesis
 - Contains its own DNA and ribosomes

Cytoplasm Components:

- Cytosol: Gel-like substance
 - Cytoplasm: Consists of organelles suspended in cytosol
 - * Site of metabolic processes for proteins and carbohydrates
 - Cytoskeleton: Network of protein filaments in cytoplasm
 - * Provides structural support and maintains cell shape
 - * Helps organize organelles and cellular movement

Endoplasmic Reticulum (ER):

Rough ER (RER)	Smooth ER (SER)
Ribosomes attached to surfaceInvolved in protein synthesis	No ribosomes on surfaceMajor site for lipid synthesis

Nucleus:

- Contains DNA and controls cellular processes
 - Nucleolus: Spherical structure within nucleus
 - * Site of ribosome synthesis and assembly
 - * Contains ribosomal RNA (rRNA)

Ribosomes:

- Found floating in cytoplasm or attached to RER
 - Small spherical organelles
 - Called "Protein factories" of the cell
 - Site of protein synthesis (translation)
 - Composed of ribosomal RNA and proteins

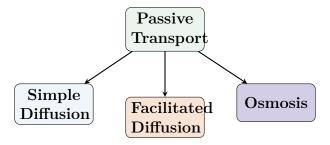
Lecture 4: Transport

Key Concept: Plasma Membrane

Selectivity: The plasma membrane is selectively permeable. Molecules pass easily when they are:

- Small (e.g., O_2 , CO_2)
- Non-polar/Non-charged (e.g., lipids)
- Lipid-soluble (hydrophobic molecules)

Transport Mechanisms Overview



Passive Transport

Definition & Characteristics

- Energy Requirement: No cellular energy (ATP) required
- **Direction:** High concentration \rightarrow Low concentration
- Gradient: Down the concentration gradient
- Types: Simple diffusion, facilitated diffusion, osmosis

Types of Passive Transport

A. Simple Diffusion

- Molecules: Small, non-polar molecules (O₂, CO₂, lipids)
- Process: Direct movement through lipid bilayer
- Equilibrium: Net movement stops when concentrations equalize

$$C_{intracellular} = C_{extracellular}$$

B. Facilitated Diffusion

- Requirement: Transport proteins needed
- Molecules: Larger or polar molecules (glucose, ions)
- Characteristics:
 - Specificity proteins select particular molecules
 - Saturation limited by number of transport proteins

Transport Proteins Comparison

Channel Proteins	Carrier Proteins	
Form hydrophilic passages	Bind specifically to molecules	
Allow rapid movement (e.g., ion channels)	Undergo conformational changes	
Less selective (size-based)	Highly selective	

Table 1: Comparison of Transport Proteins in Facilitated Diffusion

C. Osmosis

Osmosis Definition

Movement of water molecules across a semipermeable membrane from:

- High water concentration (low solute) → Low water concentration (high solute)
- Or: Low solute concentration \rightarrow High solute concentration

Tonicity and Cell Response

Summary

Key Points Summary

- $\bullet\,$ Passive transport moves substances \mathbf{down} their concentration gradient $\mathbf{without}$ \mathbf{energy}
- Simple diffusion for small/nonpolar molecules through bilayer
- Facilitated diffusion uses proteins for larger/polar molecules
- Osmosis is water movement across membranes
- Tonicity (iso-, hypo-, hypertonic) determines water movement direction

Solution Type	Cellular Effect		
Isotonic	 Equal solute concentration inside/outside cell No net water movement Cell maintains normal shape 		
Hypotonic	 Lower solute concentration outside cell Water enters cell Animal cells may lyse; plant cells become turgid 		
Hypertonic	 Higher solute concentration outside cell Water leaves cell Animal cells shrivel; plant cells plasmolyze 		

Table 2: Effects of Tonicity on Cells

Lec 5:Active Transport and Bulk

Active Transport

ACTIVE TRANSPORT - Key Concept

REQUIRES ENERGY (ATP)

Movement against concentration gradient Low concentration \rightarrow High concentration

 $ATP (3 phosphates) \rightarrow ADP (2 phosphates) + Pi + ENERGY$

PRIMARY ACTIVE TRANS-PORT

Direct Energy Use:

- Energy directly from ATP hydrolysis
- Common ions: Na^+ , K^+ , Ca^{2+} , Mg^{2+}
- Uses specific ion pumps

SECONDARY ACTIVE TRANS-PORT

Indirect Energy Use:

- Uses existing gradients
- Couples to primary transport
- No direct ATP use

WHY ACTIVE TRANSPORT MATTERS

- Maintain concentrations
- Control cell volume

- Create membrane potential
- Drive other processes

TRANSPORT PROTEIN TYPES

UNIPORTER

1 molecule
1 direction
integral
protien, sugar and
amino acids

 $A \rightarrow$

SYMPORTER

 $\begin{array}{c} \textbf{2 molecules} \\ \textbf{SAME direction} \\ \textbf{Glucose and Na}^+ \\ \textbf{A} \rightarrow \textbf{B} \rightarrow \end{array}$

ANTIPORTER

 $\begin{array}{c} \textbf{2 molecules} \\ \textbf{OPPOSITE} \\ \textbf{directions} \\ \textbf{sodium potassium} \\ \textbf{pump} \\ \textbf{A} \rightarrow \leftarrow \textbf{B} \end{array}$

Bulk

BULK TRANSPORT - For Large Molecules

EXOCYTOSIS

OUT of cell

- Vesicle fuses with membrane
- Waste removal
- Secretion

ENDOCYTOSIS

INTO cell

- Membrane invaginates
- Forms vesicle
- Material uptake

$SPOTLIGHT: Na^+/K^+ \overline{PUMP}$

3 $Na^+ \rightarrow Out the cell$

 $2 K^+ \rightarrow Into the cell$

1 ATP per cycle

Functions:

- Creates membrane potential
- Nerve impulse transmission
- Cell volume regulation
- Drives secondary transport

QUICK REVIEW

Remember:

- Active = Needs ATP
- Against gradient
- Requires proteins
- Maintains cell balance

- Key Examples:
 Na⁺/K⁺ pump
- Ca²⁺ pump
- Glucose cotransporter
- Bulk transport

Lecture 6: Proteins

PROTEINS - Building Blocks of Life

Composed of Amino Acids (monomers)

Elements: C, H, N, O in all proteins

Amino Acid \rightarrow Peptide \rightarrow Protein

Connected by **peptide bonds**

Protein Importance

WHY PROTEINS ARE ESSENTIAL

- Catalysis (Enzymes)
- Transport oxygen (Hemoglobin)
- Disease protection (Antibodies)
- Hormones (Insulin)

- Folding DNA (Histones)
- Structural support (Collagen)
- Mechanical support (Muscle proteins)

PROTEIN SIZE CLASSIFICATION

2 amino acids

Dipeptide

3 amino acids

Tripeptide

10+ amino acids

Polypeptide

AMINO ACID STRUCTURE

 NH_2 - CHR - COOH

Amino Group (NH₂, NH₃ ⁺)

Basic

R Group (Side Chain)

Variable part

Carboxyl Group (COOH,COO -)

Acidic

Note: R group is unique to each amino acid

Nutritional classification

NUTRITIONAL CLASSIFICATION

ESSENTIAL (9 amino acids)

Cannot be synthesized by body

- Lysine
- Histidine
- Methionine
- Valine
- Leucine
- Isoleucine
- Phenylalanine
- Threonine
- Tryptophan

Memory aid: L-H-M-V-I

NON-ESSENTIAL (11 amino acids)

Can be synthesized by body

- Alanine
- Arginine
- Asparagine
- Aspartic acid
- Cysteine
- Glutamic acid
- Glutamine
- Glycine
- Proline
- Serine
- Tyrosine

Key ones: A-C-S-G

CLASSIFICATION BY SIDE CHAIN (R GROUP)

CLASSIFICATION BY SIDE CHAIN (R GROUP)

NON-POLAR

Properties:

- Less soluble in water (hydrophobic)
- Contains C and H mainly
- Examples: CH₃, CH₂, CSH

POLAR

Properties:

- Water soluble (hydrophilic)
- Uncharged: NH₂, OH
- Positive: NH₃⁺
- Negative: COO⁻

AROMATIC

Contains ring structures (e.g., benzene rings)

ALIPHATIC

Straight or branched chains (no ring structures)

QUICK REVIEW

Key Points:

- Proteins = Amino acid chains
- Connected by peptide bonds
- 9 essential amino acids
- R group determines properties

Remember:

- Polar = Water-loving
- Non-polar = Water-fearing
- Charged = Ionic interactions
- Structure determines function

Lecture 7: proteins

FUNDAMENTAL PROTEIN CHEMISTRY

Peptide Bond Formula: Number of bonds = n - 1Peptide bond : the C_N bond link amino acids together (where n = number of amino acids)

Examples:

- 5 amino acids \rightarrow 4 peptide bonds
- 50 amino acids \rightarrow 49 peptide bonds
- 100 amino acids \rightarrow 99 peptide bonds
- 500 amino acids \rightarrow 499 peptide bonds

The Four Levels Of Protein Structure

THE FOUR LEVELS OF PROTEIN STRUCTURE

PRIMARY STRUCTURE - The Foundation

Linear sequence of amino acids connected by peptide bonds

Characteristics:

- Specific amino acid order
- Covalent peptide bonds
- Affects all higher levels

Abnormal Sequence causes:

- Sickle cell anemia
- Single amino acid change
- Causes protein dysfunction

SECONDARY STRUCTURE - Local Patterns

Regular, repeating structural motifs stabilized by hydrogen bonds

α Helix (Alpha Helix):

- found in skin and hair .
- they are rigiditly determined by disulfide bond.
- Common in structural proteins

β Sheet (Beta Sheet):

- Extended, stretched chains
- Forms pleated sheets called β pleated sheet.

TERTIARY STRUCTURE - 3D Architecture

Complete three-dimensional folding of a single polypeptide chain Stabilizing Forces:

- Disulfide bonds (covalent)
- Hydrogen bonds s

Disulfide Bonds - Key Feature:

- Between cysteine residues
- Strongest stabilizing force

Fibrous Proteins:

- Collagen: Skin, bones, tendons
- actin
- myosin muscle contraction
- Long, rope-like structures

Globular Proteins:

- Myoglobin: Oxygen storage
- Casein, whey: Milk protein
- Compact, spherical shape

QUATERNARY STRUCTURE - Multi-Subunit Assembly

Association of multiple polypeptide chains (subunits)

Characteristics:

- when the subnits come together
- subnits : multible folded peptide chain.

Classic Example - Hemoglobin:

• 4 subunits $(2\alpha, 2\beta)$

Conjugated Proteins

CONJUGATED PROTEINS - Beyond Pure Protein

Proteins combined with non-protein prosthetic groups for specialized functions

Types & Examples:

- Nucleoproteins: Histones + DNA
- Glycoproteins: Antibodies, hormones
- Phosphoproteins: Casein, egg pro-
- Lipoproteins: HDL, LDL cholesterol carriers

Protein Denaturation

PROTEIN DENATURATION - Structure Loss

Disruption of protein's native structure leading to loss of biological activity

Native vs Denatured:

Native State:

- Properly folded
- Biologically active
- Functional conformation

Denatured State:

- Unfolded/misfolded
- Loss of activity
- Random structure

Denaturing Agents:

Temperature

Heat breaks H-bonds

Example: Cooking eggs

pH ExtremesAcid/Base disruption

Changes ionization

Chemical Agents

Urea, detergents
Disrupt interactions

STUDY CHECKLIST & KEY TAKEAWAYS

Essential Concepts:

- Four levels of protein structure
- Peptide bond calculation (n-1)
- Denaturation causes & effects
- Disulfide bonds
- Structure determines function
- Conjugated protein types

Important Examples to Remember:

- Hemoglobin (quaternary structure)
- Collagen ,actin (fibrous)
- Myoglobin (globular, oxygen storage)
- Casein, whey (Globular, phosphoprotein in milk)
- myosin(fibrous, muscles conteraction)
- Egg whites (denaturation example by heat)

Lecture 8: Enzymes (Part1)

ENZYMES: PROTEIN CATALYSTS

Biological molecules that speed up chemical reactions in living organisms

Enzyme properties

Key Properties:

- Increase reaction velocity
- Not consumed during reaction
- Lower activation energy
- Highly specific for substrates
- Reusable can catalyze multiple reactions

Activation Energy Concept:

- Without enzyme: High activation energy
- With enzyme: Lower activation energy
- Result: Faster reaction rates
- Same end result achieved more efficiently

Substrate: The molecule that reacts with the enzyme

ENZYME ACTION MECHANISM

Step-by-step process of how enzymes work

Active Site

Specific location on enzyme where substrate binds

Like a lock that only fits a specific key

Enzyme Reaction Sequence:

Enzyme Substrate Enzyme-Substrate Product

$$E + S \rightarrow ES \rightarrow P$$

Key Points:

- Enzyme binds to substrate at active site
- Forms temporary enzyme-substrate complex (ES)
- Highly specific binding enzyme recognizes specific substrate

ENZYME EXAMPLES & FUNCTIONS

Amylase

Carbohydrate Digestion

 $\begin{array}{c} {\rm Breaks\ down\ starch} \\ {\rm Polysaccharide} \rightarrow \\ {\rm Disaccharide} \end{array}$

Begins starch digestion

sucrase

Acts on sucrose

 $\begin{array}{c} {\rm Disaccharide} \rightarrow \\ {\rm Monosaccharide} \end{array}$

 $sucrose {\rightarrow} Glucose {+} fructose$

Lactase

Acts on lactose

 $lactose {\rightarrow} glucose {+} galactose$

Detailed Example - Amylase:

Starch (polysaccharide) $\xrightarrow{\text{Amylase}}$ Maltose (disaccharide)

Enzyme Classification

ENZYME CLASSIFICATION - The Six Classes

OXIDOREDUCTASES

Catalyze oxidation-reduction reactions

$$A^{red} + B^{ox} \rightarrow A^{ox} + B^{red}$$

- Function: One compound oxidized, another reduced
- Key feature: Transfer of electrons/hydrogen atoms

TRANSFERASES

Catalyze transfer of functional groups

$$X - R + Y \rightarrow X + Y - R$$

- Function: Move functional groups between molecules
- **Key feature:** R = donor group, Y = acceptor molecule

HYDROLASES

Catalyze bond cleavage using water

$$A - B + H_2O \rightarrow A - OH + B - H$$

• Function: Break bonds by adding water

LYASES

Catalyze bond breaking without water

• Function: Break bonds without using water

ISOMERASES

Catalyze molecular rearrangements

$$A - B \rightarrow B - A$$

- Function: Rearrange atoms within molecules
- **Key feature:** Same molecular formula, different arrangement

LIGASES

Catalyze bond formation using ATP energy

$$A + B + ATP \rightarrow A - B + ADP + P_i$$

- Function: Form bonds between two molecules
- **Key feature:** Requires ATP energy input (energy-coupling)

Enzyme Specificity

ENZYME SPECIFICITY - Lock and Key Model

Enzymes are highly specific for their substrates

Key-Lock Model:

- Substrate = Key
- Active site = Lock
- Perfect fit required
- Specific shape recognition

Specificity Features:

- Shape complementarity
- Chemical compatibility
- Binding affinity
- Right-sized active site

Induced Fit Model (Advanced)

Modern understanding: Enzyme shape changes slightly upon substrate binding

More flexible than rigid lock-and-key model

Process:

- 1. Substrate approaches active site
- 2. Initial binding occurs
- 3. Enzyme-substrate complex forms
- 4. Product released, enzyme regenerated

ENZYME STUDY SUMMARY

Core Concepts:

- Enzymes are protein catalysts
- Lower activation energy
- Not consumed in reactions
- Highly specific for substrates
- Form enzyme-substrate complexes
- Active site is binding location

Six Enzyme Classes:

- Oxidoreductases (redox)
- Transferases (group transfer)
- Hydrolases (water-dependent)
- Lyases (non-water bond breaking)
- Isomerases (rearrangement)
- Ligases (ATP-dependent bonding)

Key Examples:

- Amylase: starch \rightarrow maltose
- Fructokinase: fructose metabolism
- Galactokinase: galactose processing
- Hydrolases: digestion enzymes
- Dehydrogenases: energy metabolism **Specificity Models:**
- Lock-and-Key: rigid fit
- Induced-fit: flexible binding
- Shape + chemical compatibility
- Substrate clearance after reaction

Remember: $E + S \rightarrow ES \rightarrow P$

(Enzyme regenerated and can work again!)

Lecture 9: Enzymes (Part2)

Apoenzyme & Cofactor

Component	Nature	Activity
Apoenzyme	Protein part	Inactive
Cofactor	Non-protein helper	Required
Holoenzyme	Apoenzyme + Cofactor	Active

Types of Cofactors:

• after activation conjugated enzyme (Holoenzyme)

Proenzymes (Zymogens)

Proenzyme	Active Enzyme	Activator
Trypsinogen	Trypsin	Enteropeptidase
Pepsinogen	Pepsin	HCl (low pH)

Key Points:

- Inactive trypsinogen \rightarrow (avtive)trypsin
- Activated after partial cleavage
- Common in: digestive system

Isoenzymes - LDH Distribution

Isoenzyme	Primary Location	Subnits
LDH1	Heart, RBCs	4 subnit A
LDH2	WBCs	3 subnit A , 1 subnit B
LDH3	Lungs	2 subnit A, 2 subnit B
LDH4	Kidneys, pancreas	3 subnit B, 1 subnit A
LDH5	Liver, skeletal muscle	4 subnit B

Definition: LHD: Lactase Dehydrogenase Isoenzymes

Factors Affecting Enzyme Activity

1. Temperature Effects:

Temperature	Effect	
Optimal (37°C)	Maximum activity	
High (>50°C)	Denaturation \rightarrow Inactive	
Low (<20°C)	Slow kinetics \rightarrow Low activity	

2. pH Effects:

Enzyme	Optimal pH
Most enzymes	6.0 - 8.0
Trypsin	8.0 - 8.5

3. Concentration Effects:

- \uparrow [concentration] $\rightarrow \uparrow$ [Reaction rate]
- there is a direct propostion between velocity and concentration

Lecture 10: Inhibtion

Quick Review

Concept	Key Point
Holoenzyme	Complete active enzyme = Apoenzyme
	+ Cofactor
Zymogens	Inactive precursors activated by cleavage
Isoenzymes	Tissue-specific forms for diagnosis
Enzyme Activity	Depends on temp, pH, concentration

Enzyme Inhibition

Enzyme Inhibition

Definition: Reduction or stopping of enzyme activity

Inhibitor: Molecule that binds to enzyme to prevent normal function

Normal Reaction:

$$E + S \rightarrow ES \rightarrow P$$

With Inhibitor:

$$E + S + I \rightarrow ESI$$
 or $EI \rightarrow$ No Product

Types of Enzyme Inhibition

Type	Binding Site	Mechanism
Competitive	Active site	Structure similar to substrate;
		competes for active site
Uncompetitive	Enzyme-substrate	Binds only to ES complex, forms
	complex	ESI
Non-	Allosteric site	Binds to alternative site; changes
competitive		enzyme shape

Key Characteristics:

- Competitive: Can be overcome by increasing substrate concentration
- Uncompetitive: Cannot bind to free enzyme
- Non-competitive: Cannot be overcome by substrate increase

Medical Applications of Enzymes

Medical Applications of Enzymes

1. Blood Clot Dissolution:

Enzyme	Function	Clinical Use
Serratiopeptidase	Dissolves blood clots	Heart attack, stroke

Importance: Blood clots can cause death; enzymes help dissolve dangerous clots.

Digestive Enzyme Supplementation

Problem: Elderly patients have low digestive enzyme secretion

Enzyme	Substrate	Product
Lipase	Lipids (fats)	Fatty acids + glycerol
Amylase	Starch	Maltose
Maltase	Maltose	Glucose
Trypsin	Proteins	Amino acids
Lactase	Lactose	Glucose + galactose

Benefits:

- Improved digestion in elderly
- Papain can be used easier for digestion
- Reduced digestive discomfort

ick Review		
Concept	Key Point	
Inhibition	Stopping enzyme activity - competitive,	
	uncompetitive, non-competitive	
Medical En-	Clot dissolution - streptokinase, urokinase	
zymes	prevent death	
Digestive Aids	Enzyme supplements help elderly with	
	poor digestion	
Clinical Impor-	Enzymes as therapeutic agents in	
tance	medicine	

Lecture 11: DNA,RNA Structures

DNA

DNA (Deoxyribonucleic Acid)

Function: Stores genetic information

Structure: Double-stranded helix, polymer of nucleotides

Nucleotide Components:

Sugar (Deoxyribose) + Phosphate (PO_4^{3-}) + Nitrogenous Base

Component	Type	Details
Sugar	Deoxyribose	Ribose minus one OH group at C-2'
Phosphate	PO_4^{3-}	Links nucleotides together
Bases	Purines	Adenine (A), Guanine (G)
	Pyrimidines	Thymine (T), Cytosine (C)

Base Pairing Rules:

- A pairs with T (2 hydrogen bonds)
- G pairs with C (3 hydrogen bonds)

RNA

RNA (Ribonucleic Acid)

Function: Protein synthesis and gene expression Structure: Single-stranded, polymer of nucleotides

Nucleotide Components:

Sugar (Ribose) + Phosphate (PO_4^{3-}) + Nitrogenous Base

Component	Type	Details
Sugar	Ribose	Has OH groups at both C-2' and C-3'
Phosphate	PO_4^{3-}	Links nucleotides together
Bases	Purines	Adenine (A), Guanine (G)
	Pyrimidines	Uracil (U), Cytosine (C)

Base Pairing Rules (in RNA-RNA pairing):

- A pairs with U (2 hydrogen bonds)
- G pairs with C (3 hydrogen bonds)

DNA vs RNA Comparison

Feature	DNA	RNA
Structure	Double-stranded helix	Single-stranded
Sugar	Deoxyribose	Ribose
Bases	A, T, G, C	A, U, G, C
Function	Genetic storage	Protein synthesis
Location	Nucleus	Nucleus & cytoplasm
Size	Very large	Smaller

Nitrogenous Base Categories

Nitrogenous Base Categories

Category	Structure	DNA Bases	RNA Bases
Purines	Double ring	Adenine (A), Guanine (G)	Adenine (A), Guanine (G)
Pyrimidines	Single ring	Thymine (T), Cytosine (C)	Uracil (U), Cytosine (C)

Key Differences:

- DNA uses Thymine (T), RNA uses Uracil (U)
- Purine always pairs with pyrimidine for consistent helix width

Quick Review

Concept	Key Point
Nucleotide	Basic unit = Sugar + Phosphate + Base
DNA Structure	Double helix with complementary base
	pairing
RNA Structure	Single strand with ribose sugar and uracil
Base Pairing	A-T/U, G-C maintain genetic code accu-
	racy

Lecture 12:Central Dogma of Molecular Biology

Central Dogma of Molecular Biology

Definition: Process by which DNA is transcribed to mRNA, then translated to protein

$$\mathbf{DNA} \xrightarrow{\mathrm{Transcription}} \mathbf{mRNA} \xrightarrow{\mathrm{Translation}} \mathbf{Protein}$$

Process	Location	Product
Transcription	Nucleus	mRNA from DNA
Translation	Ribosomes (cytoplasm)	Protein from mRNA

Types of RNA

RNA Type	Function	Structure
mRNA	Carries genetic info from DNA to ribosomes	Single-stranded
rRNA	Main component of ribosomes	Single-stranded, folded
tRNA	Transfers amino acids to ribosomes	Single-stranded, cloverleaf

mRNA (Messenger RNA)

Function: Carries genetic information from DNA (nucleus) to ribosomes (cytoplasm) Characteristics:

- Single-stranded
- Made from DNA by transcription
- Template for protein synthesis
- Contains codons (triplet sequences)

rRNA (Ribosomal RNA)

Function: Main component of ribosomes, carries out protein synthesis

Ribosome Subunit	Function
Small subunit	mRNA binds here
Large subunit	tRNA with amino acids bind here

Role: Facilitates translation with help of mRNA and tRNA

tRNA (Transfer RNA)

Function: Transfers amino acids to ribosomes during translation

Structure Components:

- Amino acid attachment site: Specific for each amino acid
- Anticodon: Pairs with specific codon on mRNA
- Cloverleaf structure: Allows proper folding and function

Genetic Code

Definition: Sequence of three nucleotide bases (codon) in mRNA

Codon Language: Uses 4 bases (A, G, C, U)

Codon Type	Number/Function
Total possible codons	$64 (4^3)$
Amino acid coding codons	61
Stop codons	3

Special Codons:

• AUG: Start codon (codes for methionine)

• UAA, UGA, UAG: Stop codons (terminate translation)

Quick Review

Concept	Key Point	
Central Dogma	$DNA \rightarrow mRNA \rightarrow Protein$ (transcrip-	
	tion then translation)	
mRNA	Messenger carries genetic info to ribosomes	
rRNA	Ribosomal component that facilitates	
	translation	
tRNA	Transfer brings amino acids to ribosomes	
Genetic Code	Triplet codons specify amino acids (61) +	
	stop signals (3)	

Organelle Table:

Organelle	Function	Key Point
Nucleus	Controls cell activities	Contains DNA
Mitochondria	Energy production	"Powerhouse"
Rough ER	Protein synthesis	Has ribosomes
Smooth ER	Lipid synthesis	No ribosomes
Ribosomes	Make proteins	Protein factories

Cell Transport Mechanisms:

Transport Type	Description	Energy Re-	Examples
		quired	
Simple Diffusion	Movement down concentra-	No (Passive)	O_2 , CO_2 ,
	tion gradient		H_2O
Facilitated Diffu-	Through protein chan-	No (Passive)	Glucose, ions
sion	nels/carriers		
Active Transport	Against concentration gra-	Yes (ATP)	Na^{+}/K^{+}
	dient		pump
Endocytosis	Cell engulfs materials	Yes (ATP)	Phagocytosis
Exocytosis	Cell expels materials	Yes (ATP)	Hormone se-
			cretion

Cell Types Overview:

Characteristic	Prokaryotic Cells	Eukaryotic Cells
Nucleus	No true nucleus (nucleoid)	Membrane-bound nucleus
Organelles	No membrane-bound or-	Multiple organelles
	ganelles	
DNA Organization	Circular, in cytoplasm	Linear, in nucleus
Cell Size	Smaller (1-10 μ m)	Larger (10-100 μm)
Examples	Bacteria, Archaea	Plants, Animals, Fungi

Summary and Key Points:

Important Concepts to Remember

- Cell Theory: All living things are made of cells; cells are the basic unit of life
- Membrane Importance: Controls what enters and exits the cell
- Energy Flow: Mitochondria provide ATP for cellular processes
- Protein Production: Ribosomes \rightarrow ER \rightarrow Golgi \rightarrow Final destination
- Cellular Transport: Multiple mechanisms for moving materials
- Cell Types: Prokaryotic vs Eukaryotic differences are fundamental