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1. Logic and Proofs

Logic forms the foundation of all mathematical reasoning and is essential for understanding discrete
structures.

1.1 Propositional Logic
Definition 1.1 — Proposition. A proposition is a declarative statement that is either true or
false, but not both.

■ Example 1.1 — Propositions. • "The sky is blue." (True)
• "2 + 2 = 5." (False)
• "What time is it?" (Not a proposition - it’s a question)
• "Close the door." (Not a proposition - it’s a command)

■

1.2 Logical Connectives
The basic logical connectives are:

• Negation (¬p): "not p"
• Conjunction (p∧q): "p and q"
• Disjunction (p∨q): "p or q" (inclusive OR)
• Exclusive OR (p⊕q): "p or q but not both" (exclusive OR)
• Implication (p → q): "if p then q"
• Biconditional (p ↔ q): "p if and only if q"

R Inclusive vs. Exclusive OR: The standard disjunction (∨) is inclusive, meaning "p or q or
both." The exclusive OR (⊕) means "p or q but not both."

1.3 Conditional Statements
For a conditional statement p → q:

• p is called the hypothesis or antecedent
• q is called the conclusion or consequent

1.3.1 Related Conditional Statements
Given the conditional p → q:

• Converse: q → p
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• Contrapositive: ¬q →¬p
• Inverse: ¬p →¬q

Theorem 1.1 — Equivalence of Conditional and Contrapositive. A conditional statement
and its contrapositive are logically equivalent:

p → q ≡ ¬q →¬p

1.4 Truth Tables for Compound Propositions

p q ¬p p∧q p∨q p⊕q p → q p ↔ q
T T F T T F T T
T F F F T T F F
F T T F T T T F
F F T F F F T T

Table 1.1: Truth tables for basic logical connectives

1.5 Precedence of Logical Connectives
The order of precedence (from highest to lowest):

• Negation (¬)
• Conjunction (∧) and Disjunction (∨)
• Implication (→)
• Biconditional (↔)

1.6 Logical Equivalence
Definition 1.2 — Logical Equivalence. Two propositions are logically equivalent if they have
the same truth value for all possible truth assignments. We denote this as p ≡ q or p ⇔ q.

Logical Equivalences:
Logical Equivalences Involving Conditional Statements:
Logical Equivalences Involving Biconditional Statements:

1.7 Logic and Bit Operations
Logical operations correspond to bitwise operations on computer systems:

• AND (∧) corresponds to bitwise AND
• OR (∨) corresponds to bitwise OR
• XOR (⊕) corresponds to bitwise XOR
• NOT (¬) corresponds to bitwise complement

1.8 Translation from English to Propositional Logic
■ Example 1.2 — English to Logic Translation. Let p: "It is raining" and q: "I will go to the store"

• "If it is raining, then I will not go to the store" → p →¬q
• "I will go to the store unless it is raining" →¬p → q
• "It is raining and I will go to the store" → p∧q

■
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Equivalence Name

p∧T ≡ p
Identity laws

p∨F ≡ p

p∨T ≡ T
Domination laws

p∧F ≡ F

p∨ p ≡ p
Idempotent laws

p∧ p ≡ p

¬(¬p)≡ p Double negation law

p∨q ≡ q∨ p
Commutative laws

p∧q ≡ q∧ p

(p∨q)∨ r ≡ p∨ (q∨ r)
Associative laws

(p∧q)∧ r ≡ p∧ (q∧ r)

p∨ (q∧ r)≡ (p∨q)∧ (p∨ r)
Distributive laws

p∧ (q∨ r)≡ (p∧q)∨ (p∧ r)

¬(p∧q)≡ ¬p∨¬q
De Morgan’s laws

¬(p∨q)≡ ¬p∧¬q

p∨ (p∧q)≡ p
Absorption laws

p∧ (p∨q)≡ p

p∨¬p ≡ T
Negation laws

p∧¬p ≡ F

1.9 Tautologies, Contradictions, and Contingencies
Definition 1.3 — Tautology. A tautology is a compound proposition that is always true, regard-
less of the truth values of its component propositions.

Definition 1.4 — Contradiction. A contradiction is a compound proposition that is always
false, regardless of the truth values of its component propositions.

Definition 1.5 — Contingency. A contingency is a compound proposition that is neither a
tautology nor a contradiction.

1.10 De Morgan’s Laws

Theorem 1.2 — De Morgan’s Laws. For any propositions p and q:

¬(p∧q)≡ ¬p∨¬q (1.1)

¬(p∨q)≡ ¬p∧¬q (1.2)
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Logical Equivalences Involving Conditional Statements

p → q ≡ ¬p∨q

p → q ≡ ¬q →¬p

p∨q ≡ ¬p → q

p∧q ≡ ¬(p →¬q)

¬(p → q)≡ p∧¬q

(p → q)∧ (p → r)≡ p → (q∧ r)

(p → r)∧ (q → r)≡ (p∨q)→ r

(p → q)∨ (p → r)≡ p → (q∨ r)

(p → r)∨ (q → r)≡ (p∧q)→ r

Equivalences Involving Biconditional Statements

p ↔ q ≡ (p → q)∧ (q → p)

p ↔ q ≡ ¬p ↔¬q

p ↔ q ≡ (p∧q)∨ (¬p∧¬q)

¬(p ↔ q)≡ p ↔¬q

1.11 Predicate Logic
Definition 1.6 — Predicate. A predicate is a statement involving variables that becomes a
proposition when the variables are assigned specific values from a domain.

1.11.1 Quantifiers

• Universal Quantifier (∀x): "for all x"
• Existential Quantifier (∃x): "there exists an x"

1.12 Arguments and Validity
Definition 1.7 — Argument. An argument is a sequence of propositions. All but the final
proposition are called premises, and the final proposition is called the conclusion.

Definition 1.8 — Valid Argument. An argument is valid if the conclusion is true whenever all
the premises are true.
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1.13 Rules of Inference

Rule of Inference Tautology Name
p

p → q

∴ q

(p∧ (p → q))→ q Modus ponens

¬q
p → q

∴ ¬p

(¬q∧ (p → q))→¬p Modus tollens

p → q
q → r

∴ p → r

((p → q)∧ (q → r))→ (p → r) Hypothetical syllogism

p∨q
¬p

∴ q

((p∨q)∧¬p)→ q Disjunctive syllogism

p

∴ p∨q
p → (p∨q) Addition

p∧q

∴ p
(p∧q)→ p Simplification

p
q

∴ p∧q

(p∧q)→ (p∧q) Conjunction

p∨q
¬p∨ r

∴ q∨ r

((p∨q)∧ (¬p∨ r))→ (q∨ r) Resolution

Table 1.2: Rules of inference

1.14 Rules of Inference for Quantified Statements

Rule of Inference Name
∀xP(x)
∴ P(c)

Universal instantiation

P(c) for an arbitrary c
∴ ∀xP(x)

Universal generalization

∃xP(x)
∴ P(c) for some element c

Existential instantiation

P(c) for some element c
∴ ∃xP(x)

Existential generalization

Table 1.3: Rules of inference for quantified statements
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1.15 Methods of Proof
1.15.1 Direct Proof

In a direct proof of p → q:
• Assume that p is true
• Use rules of inference and logical equivalences to show that q is true
• Conclude that p → q is true

Definition 1.9 — Common Number Types for Proofs. Common number types used in mathe-
matical proofs:

• Even integer: n = 2k for some integer k
• Odd integer: n = 2k+1 for some integer k
• Perfect square: n = k2 for some integer k
• Rational number: r = m

n where m,n are integers with no common factors and n ̸= 0

1.15.2 Indirect Proof
1.15.2.1 Proof by Contrapositive

We use the logical equivalence: p → q ≡ ¬q →¬p
Steps:
• Assume ¬q is true
• Show that ¬p is true
• Conclude ¬q →¬p is true
• Therefore, p → q is true by logical equivalence

■ Example 1.3 — Proof by Contrapositive. Prove: If n2 is even, then n is even.
Contrapositive: If n is odd, then n2 is odd.
• Assume n is odd: n = 2k+1
• Then n2 = (2k+1)2 = 4k2 +4k+1 = 2(2k2 +2k)+1, which is odd
• Thus, the contrapositive is true, so the original statement is true

■

1.15.2.2 Proof by Contradiction

To prove a statement P is true, assume the opposite, ¬P, and show that it leads to a contradiction.
Steps for One Statement:
• Assume ¬P is true
• Show this leads to a contradiction
• Therefore, ¬P is false, so P is true
Steps for Implication Statement P → Q:
• Assume P is true and ¬Q is true (i.e., P∧¬Q)
• Show that this leads to a contradiction
• Therefore, P∧¬Q is false, so P → Q is true

■ Example 1.4 — Proof by Contradiction. Prove:
√

2 is irrational
• Assume the opposite:

√
2 is rational

• Then
√

2 = a
b where a,b are coprime integers

• 2 = a2

b2 ⇒ a2 = 2b2

• So a2 is even ⇒ a is even ⇒ a = 2k
• Then a2 = 4k2 ⇒ 2b2 = 4k2 ⇒ b2 = 2k2 ⇒ b is even
• Contradiction: both a and b are even, so not coprime
• Therefore,

√
2 is irrational

■



2. Counting and Combinatorics

Combinatorics is the study of counting discrete objects and is fundamental to probability theory
and algorithm analysis.

2.1 Basic Counting Principles

2.1.1 The Sum Rule
Definition 2.1 — Sum Rule. If a task can be performed in m ways, while another task can be
performed in n ways, and the two tasks cannot be performed simultaneously, then performing
either task can be accomplished in m+n ways.

Set theoretical version of the sum rule: If A and B are disjoint sets (A∩B = /0) then

|A∪B|= |A|+ |B|

More generally, if the sets A1,A2, . . . ,An are pairwise disjoint, then:

|A1 ∪A2 ∪·· ·∪An|= |A1|+ |A2|+ · · ·+ |An|

■ Example 2.1 — Sum Rule Application. If a class has 30 male students and 25 female students,
then the class has 30+25 = 55 students. ■

2.1.2 The Product Rule
Definition 2.2 — Product Rule. If a task can be performed in m ways and another independent
task can be performed in n ways, then the combination of both tasks can be performed in mn
ways.

Set theoretical version of the product rule: Let A×B be the Cartesian product of sets A and
B. Then:

|A×B|= |A| · |B|

More generally:
|A1 ×A2 ×·· ·×An|= |A1| · |A2| · · · |An|

■ Example 2.2 — License Plates. Assume that a license plate contains two letters followed by
three digits. Each letter can be printed in 26 ways, and each digit can be printed in 10 ways, so
26 ·26 ·10 ·10 ·10 = 676,000 different plates can be printed. ■
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2.1.3 The Inclusion-Exclusion Principle
Definition 2.3 — Inclusion-Exclusion Principle. The inclusion-exclusion principle generalizes
the sum rule to non-disjoint sets.

In general, for arbitrary (but finite) sets A, B:

|A∪B|= |A|+ |B|− |A∩B|

■ Example 2.3 — University Students. Assume that in a university with 1000 students, 200
students are taking a course in mathematics, 300 are taking a course in physics, and 50 students are
taking both. How many students are taking at least one of those courses?

Answer: If M = set of students taking Mathematics, P = set of students taking Physics, then:

|M∪P|= |M|+ |P|− |M∩P|= 200+300−50 = 450

students are taking Mathematics or Physics. ■

For three sets the following formula applies:

|A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|

And for an arbitrary union of sets:

|A1 ∪A2 ∪·· ·∪An|= s1 − s2 + s3 − s4 + · · ·± sn

where sk = sum of the cardinalities of all possible k-fold intersections of the given sets.



3. Functions

Functions are fundamental mathematical objects that describe relationships between sets and form
the basis for understanding mappings in discrete mathematics.

3.1 Definition and Basic Concepts
Definition 3.1 — Function. Let A and B be nonempty sets. A function f from A to B is an
assignment of exactly one element of B to each element of A. We write f (a) = b if b is the
unique element of B assigned by the function f to the element a of A. If f is a function from A
to B, we write f : A → B.

Definition 3.2 — Domain, Codomain, Range. If f is a function from A to B, we say that A is
the domain of f and B is the codomain of f . If f (a) = b, we say that b is the image of a and a
is a preimage of b. The range, or image, of f is the set of all images of elements of A. Also, if
f is a function from A to B, we say that f maps A to B.

■ Example 3.1 — Function Example. Let A = {1,2,3} and B = {a,b,c,d}. Define a function
f : A → B by:

f (1) = a, f (2) = b, f (3) = d

Each element of A is assigned exactly one element of B, so f is a valid function from A to B. ■

3.2 Types of Functions
3.2.1 One-to-One Functions (Injective)

Definition 3.3 — Injective Function. A function f is said to be one-to-one, or an injection, if
and only if f (a) = f (b) implies that a = b for all a and b in the domain of f . A function is said
to be injective if it is one-to-one.

R A function f is one-to-one if and only if f (a) ̸= f (b) whenever a ̸= b. This way of expressing
that f is one-to-one is obtained by taking the contrapositive of the implication in the definition.

We can express that f is one-to-one using quantifiers as

∀a∀b( f (a) = f (b)→ a = b)

or equivalently,
∀a∀b(a ̸= b → f (a) ̸= f (b))

where the universe of discourse is the domain of the function.
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■ Example 3.2 — Non-Injective Function. Determine whether the function f (x) = x2 from the
set of integers to the set of integers is one-to-one.

Solution: The function f (x) = x2 is not one-to-one because, for instance,

f (1) = f (−1) = 1

but 1 ̸=−1. Therefore, different inputs can give the same output, so the function is not injective.
Note that the function f (x) = x2, with its domain restricted to Z+ (the set of positive integers),

is one-to-one. ■

3.2.2 Onto Functions (Surjective)
Definition 3.4 — Surjective Function. A function f from A to B is called onto, or a surjection,
if and only if for every element b ∈ B, there is an element a ∈ A such that f (a) = b. A function
f is called surjective if it is onto.

R A function f is onto if
∀y∃x( f (x) = y)

where the domain for x is the domain of the function and the domain for y is the codomain of
the function.

■ Example 3.3 — Non-Surjective Function. Is the function f (x) = x2 from the set of integers to
the set of integers onto?

Solution: The function f is not onto because there is no integer x such that

x2 =−1

for instance. Therefore, not every element in the codomain Z has a preimage in the domain Z. ■

3.2.3 Bijective Functions
Definition 3.5 — Bijective Function. The function f is a one-to-one correspondence, or a
bijection, if it is both one-to-one and onto. We also say that such a function is bijective.

■ Example 3.4 — Bijection Example. Let f be the function from {a,b,c,d} to {1,2,3,4} with

f (a) = 4, f (b) = 2, f (c) = 1, f (d) = 3

Is f a bijection?
Solution: The function f is one-to-one and onto.
It is one-to-one because no two values in the domain are assigned the same function value.
It is onto because all four elements of the codomain {1,2,3,4} are images of elements in the

domain {a,b,c,d}.
Hence, f is a bijection. ■

3.3 Inverse Functions and Composition
Definition 3.6 — Inverse Function. Let f be a one-to-one correspondence from the set A to
the set B. The inverse function of f is the function that assigns to each element b ∈ B the
unique element a ∈ A such that f (a) = b. The inverse function of f is denoted by f−1. Hence,
f−1(b) = a when f (a) = b.

R Be sure not to confuse the function f−1 with the function 1
f , which is the function that assigns

to each x in the domain the value 1
f (x) . Notice that the latter makes sense only when f (x) is a

non-zero real number.
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■ Example 3.5 — Inverse Function Example. Let f be the function from {a,b,c} to {1,2,3}
such that

f (a) = 2, f (b) = 3, f (c) = 1

Is f invertible, and if it is, what is its inverse?
Solution: The function f is invertible because it is a one-to-one correspondence (bijection).
The inverse function f−1 reverses the correspondence given by f , so

f−1(1) = c, f−1(2) = a, f−1(3) = b

■

3.3.1 Function Composition
Definition 3.7 — Function Composition. Let g be a function from the set A to the set B and let
f be a function from the set B to the set C. The composition of the functions f and g, denoted
by f ◦g, is defined by ( f ◦g)(a) = f (g(a)).

In other words, f ◦g is the function that assigns to the element a of A the element assigned by
f to g(a). That is, to find ( f ◦g)(a), we first apply the function g to a to obtain g(a) and then we
apply the function f to the result g(a) to obtain ( f ◦g)(a) = f (g(a)).

Note that the composition f ◦g cannot be defined unless the range of g is a subset of the domain
of f .

■ Example 3.6 — Function Composition. Let f and g be functions from the set of integers to
itself, defined by:

f (x) = 2x+3 and g(x) = 3x+2

What is the composition of f and g? What is the composition of g and f ?
Solution: Both compositions f ◦g and g◦ f are defined. We compute:

( f ◦g)(x) = f (g(x)) = f (3x+2) = 2(3x+2)+3 = 6x+7

(g◦ f )(x) = g( f (x)) = g(2x+3) = 3(2x+3)+2 = 6x+11

Remark: Even though f ◦ g and g ◦ f are both defined, they are not equal. In other words,
composition of functions is not generally commutative. ■

When composing a function with its inverse, in either order, we obtain the identity function.
Suppose f is a one-to-one correspondence from a set A to a set B. Then the inverse function f−1

exists and is a one-to-one correspondence from B to A. Since f−1(b) = a when f (a) = b, we have:

( f−1 ◦ f )(a) = f−1( f (a)) = f−1(b) = a

( f ◦ f−1)(b) = f ( f−1(b)) = f (a) = b

Thus, f−1 ◦ f = IA and f ◦ f−1 = IB, where IA and IB are the identity functions on sets A and B,
respectively. That is,

( f−1)−1 = f

3.4 Special Functions
3.4.1 Floor and Ceiling Functions

Definition 3.8 — Floor and Ceiling Functions. The floor function assigns to the real number
x the largest integer that is less than or equal to x. The value of the floor function at x is denoted
by ⌊x⌋.
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The ceiling function assigns to the real number x the smallest integer that is greater than or
equal to x. The value of the ceiling function at x is denoted by ⌈x⌉.

R The floor function is often also called the greatest integer function. It is often denoted by ⌊x⌋
or [x].

■ Example 3.7 — Floor and Ceiling Examples. These are some values of the floor and ceiling
functions:

⌊1/2⌋= 0, ⌈1/2⌉= 1, ⌊−1/2⌋=−1, ⌈−1/2⌉= 0

⌊3.1⌋= 3, ⌈3.1⌉= 4, ⌊7⌋= 7, ⌈7⌉= 7

■



4. Sequences and Summations

Sequences and summations are fundamental concepts in discrete mathematics that provide tools for
describing patterns and calculating sums efficiently.

4.1 Sequences
Definition 4.1 — Sequence. A sequence is a function from a subset of the set of integers
(usually either the set {0,1,2, . . .} or the set {1,2,3, . . .}) to a set S. We use the notation an to
denote the image of the integer n. We call an a term of the sequence.

■ Example 4.1 — Sequence Example. Consider the sequence {an}, where an =
1
n . The list of

the terms of this sequence, beginning with a1, namely,

a1,a2,a3,a4, . . .

starts with
1,

1
2
,
1
3
,
1
4
, . . .

■

4.1.1 Finite and Infinite Sequences
A sequence is called finite if it contains a specific number of terms and ends, while it is infinite if it
continues indefinitely without terminating.

4.1.2 Types of Sequences
4.1.2.1 Arithmetic Sequences

Definition 4.2 — Arithmetic Progression. An arithmetic progression is a sequence of the form

a,a+d,a+2d,a+3d, . . . ,a+nd, . . .

where the initial term a and the common difference d are real numbers.

The n-th term of an arithmetic sequence is given by the formula:

an = a+(n−1) ·d

where:
• an is the n-th term
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• a is the first term
• d is the common difference
• n is the position of the term in the sequence

R An arithmetic progression is a discrete analogue of the linear function f (x) = dx+a.

Definition 4.3 — Common Difference. In an arithmetic sequence, the common difference d is
the fixed amount added to each term to get the next term. It can be found by subtracting any
term from the term that follows it:

d = an+1 −an

■ Example 4.2 — Arithmetic Sequence. Consider the arithmetic sequence with first term a = 2
and common difference d = 3.

an = a+(n−1)d = 2+(n−1) ·3

The first few terms are:
2,5,8,11,14, . . .

■

4.1.2.2 Geometric Sequences
Definition 4.4 — Geometric Progression. A geometric progression is a sequence of the form

a,ar,ar2, . . . ,arn, . . .

where the initial term a and the common ratio r are real numbers.

The n-th term of a geometric sequence is given by:

an = a · rn−1

where:

• an is the n-th term
• a is the first term
• r is the common ratio
• n is the position of the term in the sequence

R A geometric progression is a discrete analogue of the exponential function f (x) = arx.

Definition 4.5 — Common Ratio. It is the fixed number by which each term is multiplied to
get the next term. It can be found using the formula:

r =
an+1

an

■ Example 4.3 — Geometric Sequence. Consider a geometric sequence with first term a = 3
and common ratio r = 2.

an = a · rn−1 = 3 ·2n−1

The first few terms of the sequence are:

3,6,12,24,48, . . .

■
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4.1.2.3 Special Sequences

• Fibonacci Sequence: Each term is the sum of the two preceding terms

an = an−1 +an−2, a1 = 1,a2 = 1

Example: 1,1,2,3,5,8,13, . . .
• Harmonic Sequence: Reciprocals of positive integers

an =
1
n

Example: 1, 1
2 ,

1
3 ,

1
4 , . . .

• Factorial Sequence: Each term is the factorial of its position

an = n!

Example: 1,2,6,24,120, . . .
• Square Numbers: Squares of natural numbers

an = n2

Example: 1,4,9,16,25, . . .
• Triangular Numbers: Sum of the first n natural numbers

an =
n(n+1)

2

Example: 1,3,6,10,15, . . .

4.2 Summations
Definition 4.6 — Summation. The summation of a sequence of terms is the process of adding
them together. It is typically represented as:

n

∑
i=1

ai = a1 +a2 +a3 + · · ·+an

• ∑ denotes the summation symbol
• ai represents the terms being summed
• i is the index of summation

4.2.1 Examples of Summations
■ Example 4.4 — Simple Summation. What is the value of ∑

4
i=1 2i?

Solution:
4

∑
i=1

2i = 2(1)+2(2)+2(3)+2(4) = 2+4+6+8 = 20

■

■ Example 4.5 — Alternating Summation. What is the value of ∑
8
k=4(−1)k?

Solution: We have
8

∑
k=4

(−1)k = (−1)4 +(−1)5 +(−1)6 +(−1)7 +(−1)8

= 1+(−1)+1+(−1)+1 = 1

■
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4.2.2 Common Summation Formulas

Theorem 4.1 — Important Summation Formulas.

n

∑
k=1

k =
n(n+1)

2
(4.1)

n

∑
k=1

k2 =
n(n+1)(2n+1)

6
(4.2)

n

∑
k=1

k3 =

(
n(n+1)

2

)2

(4.3)

n−1

∑
k=0

ark = a
1− rn

1− r
(r ̸= 1) (4.4)

∞

∑
k=0

ark =
a

1− r
(|r|< 1) (4.5)

4.2.3 Properties of Summations
Let ak, bk be sequences and c be a constant. Then:

1. Linearity:
n

∑
k=1

(ak +bk) =
n

∑
k=1

ak +
n

∑
k=1

bk

2. Constant Multiple:
n

∑
k=1

c ·ak = c ·
n

∑
k=1

ak

3. Summation of a Constant:
n

∑
k=1

c = c ·n

4. Index Shifting:
n

∑
k=m

ak =
n−m

∑
j=0

a j+m (where j = k−m)

5. Splitting a Sum:
n

∑
k=1

ak =
m

∑
k=1

ak +
n

∑
k=m+1

ak for 1 ≤ m < n

4.2.4 Sum of a Geometric Sequence
A geometric sequence is a sequence where each term is found by multiplying the previous term by
a constant ratio r.

4.2.4.1 Finite Geometric Series

If a is the first term and r ̸= 1, the sum of the first n terms is:

Sn = a
1− rn

1− r

4.2.4.2 Infinite Geometric Series

If |r|< 1, the sum of an infinite geometric series is:

S =
a

1− r
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■ Example 4.6 — Finite Geometric Series. Given the geometric sequence: 3,6,12,24,48, we
have:

• First term: a = 3
• Common ratio: r = 2
• Number of terms: n = 5
Using the formula:

S5 = 3 · 1−25

1−2
= 3 · 1−32

−1
= 3 ·31 = 93

■





5. Graph Theory

Graph theory provides powerful tools for modeling and solving real-world problems involving
relationships between objects.

5.1 Introduction to Graphs

5.1.1 Definition of a Graph
A graph G = (V,E) is a mathematical structure consisting of:

• A set V of points called vertices (singular: vertex)
• A set E of lines called edges that connect some of the vertices

5.1.2 Applications
Graphs can visually depict links between objects where:

• Objects are represented as vertices
• Links between objects are represented as edges

5.1.3 Graph Properties

• Edges can overlap with other edges
• There does not need to be a vertex at edge overlaps
• Graphs can consist of multiple disconnected pieces
• Vertices can exist independently with no incident edges

5.2 Graph Notation and Terminology

5.2.1 Basic Notation
Let G = (V,E) be a graph. We define:

v = |V | (number of vertices, also called the order) (5.1)

e = |E| (number of edges) (5.2)

5.2.2 Vertex Sets
The vertex set of a graph is denoted as:

V = {v1,v2,v3, . . . ,vn}
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For a graph with labeled vertices A,B,C,D, we write:

V = {A,B,C,D}

5.2.3 Edge Notation
An edge connecting vertices u and v is denoted as:

e = {u,v} or e = (u,v)

The complete edge set can be written as:

E = {e1,e2,e3, . . . ,em}

5.3 Vertex Degrees

5.3.1 Definition
The degree of a vertex v, denoted deg(v) or d(v), is the number of edges incident to (attached to)
that vertex.

5.3.2 Degree List
The degree list of a graph is a sequence of the degrees of all vertices, arranged in non-decreasing
order:

Degree List = [d1,d2,d3, . . . ,dn]

where d1 ≤ d2 ≤ d3 ≤ ·· · ≤ dn.

5.3.3 Handshaking Lemma

Theorem 5.1 — Handshaking Lemma. For any graph G = (V,E):

∑
v∈V

deg(v) = 2|E|

This means the sum of all vertex degrees equals twice the number of edges.

5.4 Planar Graphs

5.4.1 Definition
A graph is planar if it can be drawn in the plane such that no two edges cross each other.

5.4.2 Faces of a Planar Graph
When a connected planar graph is drawn without edge crossings, it divides the plane into regions
called faces. This includes:

• Interior faces: Bounded regions
• Exterior face: The unbounded region surrounding the graph

5.4.3 Degree of a Face
The degree of a face is the number of edges that bound that face. An edge that bounds only one
face (like a bridge) contributes 1 to the face’s degree, while an edge bounding two faces contributes
1 to each face’s degree.
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5.5 Euler’s Formula
5.5.1 Euler’s Formula for Planar Graphs

Theorem 5.2 — Euler’s Formula. For a connected planar graph with v vertices, e edges, and f
faces:

v− e+ f = 2

This is one of the most fundamental results in graph theory.

■ Example 5.1 — Euler’s Formula Application. Problem: A connected planar graph has 24
vertices and 30 faces. How many edges does the graph have?

Solution: Using Euler’s formula:

v− e+ f = 2 (5.3)

24− e+30 = 2 (5.4)

54− e = 2 (5.5)

e = 52 (5.6)

Therefore, the graph has 52 edges. ■

5.6 Graph Examples
5.6.1 Simple Graph Example

Consider a graph with 4 vertices labeled A, B, C, and D, with 5 edges connecting them:

A B

C D

Analysis:
• Vertex set: V = {A,B,C,D}
• Edge set: E = {{A,B},{A,C},{A,D},{B,D},{C,D}}
• Number of vertices: v = 4
• Number of edges: e = 5
• Degrees: deg(A) = 3, deg(B) = 2, deg(C) = 2, deg(D) = 3
• Degree list: [2,2,3,3]

5.6.2 Disconnected Graph Example
Here’s an example of a graph with multiple components:

A B

C

D E

F

Analysis for a Multi-Component Graph:
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• A graph with 6 vertices and 4 edges
• It consists of 3 connected components:

1. Triangle: vertices {A,B,C} with 3 edges
2. Edge: vertices {D,E} with 1 edge
3. Isolated vertex: {F} with 0 edges

• Degrees: deg(A) = 2, deg(B) = 2, deg(C) = 2, deg(D) = 1, deg(E) = 1, deg(F) = 0
• Degree list: [0,1,1,2,2,2]

5.6.3 Planar Graph with Faces
Consider this planar graph and its faces:

A B

CD

E

f1

f2f3

f0 (exterior)

Euler’s Formula Verification:
• Vertices: v = 5
• Edges: e = 7
• Faces: f = 4 (including exterior face f0)
• Check: v− e+ f = 5−7+4 = 2
Face Degrees:
• deg( f0) = 4 (exterior face)
• deg( f1) = 3 (interior face)
• deg( f2) = 3 (interior face)
• deg( f3) = 4 (interior face)

5.7 Graph Theory Applications
Graph theory has numerous applications across various fields:

• Computer Science: Network topology, data structures, algorithms
• Social Networks: Modeling relationships and connections
• Transportation: Route optimization, traffic flow analysis
• Biology: Protein interactions, evolutionary trees
• Economics: Market analysis, supply chain optimization
• Engineering: Circuit design, structural analysis

Understanding fundamental concepts like vertex degrees, planarity, and Euler’s formula forms the
foundation for more advanced graph theoretical applications in computer science, mathematics,
and engineering.

5.8 Related Mathematical Concepts

5.8.1 Fuzzy Logic
Instead of things being just "true" or "false," fuzzy logic lets things be partially true. For example,
someone can be "somewhat tall" or "very warm." This is more like how humans think in real life.

It’s used in everyday items like air conditioners and washing machines to make smart decisions
when things aren’t black and white.
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5.8.2 Graphs and Trees
A graph is just dots (called nodes) connected by lines (called edges). Think of a map with cities
connected by roads, or people connected on social media.

Trees are special graphs that look like family trees - they branch out from a main point without
forming loops. Your computer’s file folders are organized like a tree.

5.8.3 Game Theory
Game theory studies how people make decisions when what they choose affects others, and what
others choose affects them. It’s like figuring out the best strategy in a game where everyone is
trying to win.

The classic example is two prisoners who have to decide whether to confess or stay quiet, not
knowing what the other will do.

5.8.4 How They Connect
These ideas work together in many real-world problems. You might use fuzzy logic to handle
uncertainty, graphs to show relationships, and game theory to find the best strategy.
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